Differential Quadrature Method for Dynamic Buckling of Graphene Sheet Coupled by a Viscoelastic Medium Using Neperian Frequency Based on Nonlocal Elasticity Theory
Authors
Abstract:
In the present study, the dynamic buckling of the graphene sheet coupled by a viscoelastic matrix was studied. In light of the simplicity of Eringen's non-local continuum theory to considering the nanoscale influences, this theory was employed. Equations of motion and boundary conditions were obtained using Mindlin plate theory by taking nonlinear strains of von Kármán and Hamilton's principle into account. On the other hand, a viscoelastic matrix was modeled as a three-parameter foundation. Furthermore, the differential quadrature method was applied by which the critical load was obtained. Finally, since there was no research available for the dynamic buckling of a nanoplate, the static buckling was taken into consideration to compare the results and explain some significant and novel findings. One of these results showed that for greater values of the nanoscale parameter, the small scale had further influences on the dynamic buckling.
similar resources
Buckling analysis of graphene nanosheets based on nonlocal elasticity theory
This paper proposed analytical solutions for the buckling analysis of rectangular single-layered graphene sheets under in-plane loading on all edges simply is supported. The characteristic equations of the graphene sheets are derived and the analysis formula is based on the nonlocal Mindlin plate. This theory is considering both the small length scale effects and transverse shear deformation ef...
full textBuckling analysis of graphene nanosheets based on nonlocal elasticity theory
This paper proposed analytical solutions for the buckling analysis of rectangular single-layered graphene sheets under in-plane loading on all edges simply is supported. The characteristic equations of the graphene sheets are derived and the analysis formula is based on the nonlocal Mindlin plate. This theory is considering both the small length scale effects and transverse shear deformation ef...
full textbuckling analysis of graphene nanosheets based on nonlocal elasticity theory
this paper proposed analytical solutions for the buckling analysis of rectangular single-layered graphene sheets under in-plane loading on all edges simply is supported. the characteristic equations of the graphene sheets are derived and the analysis formula is based on the nonlocal mindlin plate. this theory is considering both the small length scale effects and transverse shear deformation ef...
full textStress Analysis of Skew Nanocomposite Plates Based on 3D Elasticity Theory Using Differential Quadrature Method
In this paper, a three dimensional analysis of arbitrary straight-sided quadrilateral nanocomposite plates are investigated. The governing equations are based on three-dimensional elasticity theory which can be used for both thin and thick nanocomposite plates. Although the equations can support all the arbitrary straight-sided quadrilateral plates but as a special case, the numerical results f...
full textbuckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
Nonlocal Mechanical Buckling Analysis of Nano Single Layer Sheets Using Differential Quadrature method
The following article investigates buckling of moderately thick circular Nano plates with an orthotropic property under uniform radial compressive in-plane mechanical load. Taking into account nonlocal elasticity theory (Eringen), principle of virtual work, first order shear deformation plate theory (FSDT) and nonlinear Von-Karman strains, the governing equations are obtained based on displacem...
full textMy Resources
Journal title
volume 4 issue 3
pages 147- 160
publication date 2018-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023